A Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Authors
Abstract:
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometrica 47, pp. 455-473) and the shared parameter model of Follmann and Wu (1995, Biometrics 51, pp. 151-168), two of the most used models for longitudinal data with dropout in economics and medical researches, respectively, cannot sufficiently consider the relation between response variables and missing mechanism. In this paper, the Follmann and Wu’s (1995) dropout model is also generalized by adding a previous time outcome component to the model. Having modified this model, in the case of longitudinal data with two time periods, a general form of this model is obtained, which is able to consider all relations between response and missing mechanism. This is proven in an implicit way. A test for missing at random in the generalized Hechman model (Crouchley and Ganjali, 2002, Stat. Model. 2, pp. 39-62) is also introduced where one has to use $delta$-method to find the variance of the test statistic.
similar resources
Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout.
The analysis of longitudinal repeated measures data is frequently complicated by missing data due to informative dropout. We describe a mixture model for joint distribution for longitudinal repeated measures, where the dropout distribution may be continuous and the dependence between response and dropout is semiparametric. Specifically, we assume that responses follow a varying coefficient rand...
full textBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
full textMixed-effect hybrid models for longitudinal data with nonignorable dropout.
SUMMARY Selection models and pattern-mixture models are often used to deal with nonignorable dropout in longitudinal studies. These two classes of models are based on different factorizations of the joint distribution of the outcome process and the dropout process. We consider a new class of models, called mixed-effect hybrid models (MEHMs), where the joint distribution of the outcome process a...
full textA Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response
In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...
full textA Semiparametric Marginalized Model for Longitudinal Data with Informative Dropout.
We propose a marginalized joint-modeling approach for marginal inference on the association between longitudinal responses and covariates when longitudinal measurements are subject to informative dropouts. The proposed model is motivated by the idea of linking longitudinal responses and dropout times by latent variables while focusing on marginal inferences. We develop a simple inference proced...
full textVarying-coefficient models for longitudinal processes with continuous-time informative dropout
Dropout is a common occurrence in longitudinal studies. Building upon the pattern-mixture modeling approach within the Bayesian paradigm, we propose a general framework of varying-coefficient models for longitudinal data with informative dropout, where measurement times can be irregular and dropout can occur at any point in continuous time (not just at observation times) together with administr...
full textMy Resources
Journal title
volume 3 issue 1
pages 75- 90
publication date 2006-09
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023